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Abstract- The ability to perform on-board science data 
preprocessing and analysis on a satellite can significantly 
reduce the amount of bandwidth and storage required in the 
production of space science products.  The implementation of 
two typical data preprocessing algorithms, cloud 
contamination detection and atmospheric correction, can 
provide some valuable insight into the feasibility of 
implementing more sophisticated processes.  Three platforms 
are considered in this analysis: the microprocessor, the Field 
Programmable Gate Array (FPGA), and the Application 
Specific Integrated Circuit (ASIC).  By benchmarking the 
algorithms on a variety of commercial microprocessors, and 
inferring from the results the expected performance of the 
available flight-qualified microprocessors, it can be shown 
that increasing the sophistication of the processing algorithms 
on this platform would become impractical in a real-time 
scenario.  Hardware implementation of the algorithms, using 
FPGAs or ASICs, provides the ability to perform much of the 
processing in parallel, thereby enhancing the performance.  
The results of benchmarking the hardware implementation of 
the algorithms can be compared to the results of the 
microprocessor benchmarks.  An additional factor that needs 
to be addressed with the hardware implementations, 
especially with the FPGAs, is the utilization of the resources 
available in the devices.  Recent advances in the size and 
speed of available devices, as well as in the tools used to 
synthesize, place and route a design, are making this less of a 
concern.  One advantage of the FPGA is that they are 
relatively quick and easy to program, making them an ideal 
platform for development and testing, after which the design 
can be ported to an ASIC. 
 
 

I. INTRODUCTION 
 

 The ability to preprocess and analyze science data on-
board a satellite in real time can significantly reduce the 
amount of bandwidth and storage required in the 
production of space science products.   Implementing and 
comparing rudimentary data preprocessing algorithms 
across various platforms suitable for use on-board satellites 
can provide valuable insight into the feasibility of 
implementing more sophisticated algorithms.  The two 
algorithms implemented in this analysis are cloud 
contamination detection (cloud masking) and atmospheric 
correction.  The platforms under consideration are the 
microprocessor, the Field Programmable Gate Array 
(FPGA), and the Application Specific Integrated Circuit 
(ASIC).  The National Oceanic and Atmospheric 

Administration (NOAA) Advanced Very High Resolution 
Radiometer (AVHRR) instrument produced the data set 
used for this analysis, specifically NOAA14 AVHRR 
Level 1b, 4 kilometer Global Area Coverage (GAC).  The 
feasibility of real time processing is determined by 
comparing the computational speed of the algorithms on 
the various platforms to the AVHRR scan rate. 
 
 

II. ALGORITHMS 
 
A. Cloud Contamination Detection 
 
 The presence of cloud contamination can hinder the 
use of certain satellite data, and these cases require a cloud 
detection process to mask out cloudy pixels from further 
processing.  The cloud detection tests used in this analysis 
are based on the work of Saunders and Kriebel [1], except 
for the Spatial Coherence Test, which came from 
Thiermann and Ruprecht, as discussed by Cracknell [2].  
Simplifications were made to the algorithms so they would 
be more suitable for hardware implementation. 
 The image data is processed pixel by pixel through a 
series of threshold tests, which vary depending on the time 
of day and underlying surface conditions.  For daytime 
images, a set of background tests is first used to screen 
pixels that are not suitable for the cloud detection tests.  
The background tests are comprised of the Sun Glint Test, 
Snow/Ice Test, and Desert Test.  These background tests 
were taken from the Phillips Laboratory, Automated 
Satellite Cloud Analysis – Tactical Nephanalysis 
(TACNEPH) document [3].   
 
For daytime images, the following tests are applied:  

1. Infrared Threshold Test 
2.  Spatial Coherence Test 
3. Visible Threshold Test 
4. Near-Infrared to Visible Ratio Test 
5. Thin Cirrus Test 

 
For nighttime images, the following tests are applied:  

1. Infrared Threshold Test 
2.  Spatial Coherence Test 
3. Fog/Low Stratus Test 
4. Medium/High Level Cloud Test 
5. Thin Cirrus Test 



B. Atmospheric Correction 
 
 The atmosphere can corrupt the surface target 
information acquired by a satellite through scattering and 
absorption.  The more dominant of the two is atmospheric 
scattering.  The algorithm used in this analysis addresses 
this issue, and is based on the basic technique of dark 
object subtraction, as discussed by Chavez [4].  The 
algorithm has been simplified and adapted for AVHRR 
GAC data. 
 
 

III. MICROPROCESSOR RESULTS 
 

 Three NOAA AVHRR GAC data sets containing land 
and water bodies were used for testing: a nighttime image, 
a daytime image with minimal sun glint, and a daytime 
image with extensive sun glint.  To provide a fair 
comparison of the various platforms, the Input/Output 
(I/O) interfaces were not considered, and only the 
computational portions of the algorithms were timed for 
comparison.  A single scan line of low resolution GAC 
data represents approximately one fifth the number of 
samples of a scan line of High Resolution Picture 
Transmission (HRPT) AVHRR data.  Therefore, the 
execution times of the algorithms are scaled up by a factor 
of five before being divided into the number of scan lines 
for the GAC data set under test.  This provides a value that 
represents the execution speed in terms of scan lines of 
HRPT processed per second.  This is easily compared with 
the AVHRR scan rate of six scans per second. 
 Three microprocessors were tested, but only the 
PowerPC 750, with an estimated performance rating of 
400+ Million Instructions Per Second (MIPS), could 
provide a realistic comparison with the currently available 
flight-qualified computers.  The PowerPC 750 was able to 
process the cloud detection algorithm 6-9 times faster than 
the AVHRR scan rate, depending on the data set, and the 
atmospheric correction algorithm 80-120 times faster than 
the AVHRR scan rate. 
 The accuracy of the simplified cloud detection 
algorithms was measured by comparing the output data to 
a cloud mask obtained from the NOAA Clouds from 
AVHRR (CLAVR) experimental algorithm.  The overall 
accuracy of the simplified algorithm varied by as much as 
68-89 percent across the three data sets. 
 
 

IV. HARDWARE PLATFORM 
 

 The hardware platform used for implementing the 
algorithms on an FPGA is the Annapolis Microsystems 
FIREBIRDTM/PCI reconfigurable computing board.  This 
board utilizes the Xilinx XCV2000E FPGA, contains 36 
Mbytes of on-board memory, and provides processing 
clocks up to 150MHz.  The Xilinx XCV2000E FPGA 

contains over 2.5 million system gates, as well as Block 
Random Access Memory (RAM), which can be used to 
store arrays of constants.  The FIREBIRDTM/PCI board 
resides in a host computer, and data is passed between the 
host and FPGA using the on-board memory.  The host 
configures the board by loading an image into the FPGA, 
and the board can be reconfigured on the fly.  Control of 
the FPGA is handled with 64-bit bi-directional registers. 
 
 

V. HARDWARE DESIGN 
 

 The implementation of the cloud detection algorithms 
in the FPGA involved the development of both the host 
code, written in C, and the FPGA code, written in Very 
High Speed Integrated Circuit (VHSIC) Hardware 
Description Language (VHDL). The VHDL code can be 
simulated, and there are Annapolis Microsystems tools that 
allow the FPGA design to be simulated in conjunction with 
the host code.  A Floating Point Math Library was also 
available from Annapolis Microsystems, which saved the 
time and effort that would have been required to develop 
the floating point math routines.  Once the design has been 
functionally simulated, it is synthesized, or translated to a 
Xilinx specific gate level implementation.  Xilinx tools are 
then used to place and route the synthesized design into an 
image that can be loaded into the FPGA. 
 At this point, the accuracy of the algorithms was not 
as important as achieving a good comparison of processing 
speed across the various platforms.  As long as the output 
of the FPGA implementation was identical to that of the 
microprocessor, a good comparison could be made.  
Therefore, the overall design approach was to implement 
the cloud detection algorithm one test at a time.  Once all 
of the tests were implemented, and the outputs were 
successfully compared to the corresponding outputs of the 
microprocessor, the various test modules could be 
integrated to form the final design.  Before any of the tests 
could be implemented, the interface between the host 
software and the FPGA design had to be developed, which 
proved to be a large part of the design effort. 
 Because the pixel data for the entire image could not 
fit into the on-board memory, it was necessary to develop a 
method of breaking the data set into manageable blocks.  
In this way, the host could transfer a data block to the on-
board memory and signal the FPGA to begin processing.  
While the FPGA was processing the data, it would place 
the results in a separate bank of on-board memory, which 
was large enough to store the entire cloud mask.  The 
FPGA would signal the host when processing was 
finished. This would repeat until the entire data set was 
processed.  This method also made it convenient for the 
host to accumulate the amount of time that was consumed 
by the FPGA in performing the cloud detection algorithm. 
 There were several things to consider when breaking 
the data set into blocks.  There were five possible results 



for the cloud mask: CLEAR, CLOUDY, CLEAR_SNOW, 
CLEAR_DESERT, and UNCLASSIFIED.  Therefore, the 
resulting cloud mask for each image pixel was three bits 
wide and could fit in a single byte. The memory bank used 
to store the resulting cloud mask was 32 bits wide, so on-
board memory could be conserved and the cloud mask 
could be stored in its entirety if four byte-wide pixel masks 
were packed into each output location.  In order to remain 
aligned with the input scan line boundary as well as the 
output word boundary, the data set was broken into the 
largest possible blocks that contained an even multiple of 
four scan lines. 
 Most of the tests could be performed on a single 
independent pixel.  However, the Spatial Coherence Test 
involved inspection of a sliding 3x3 pixel window, which 
meant that each data block, except the first, would need to 
include the last scan line from the previous data block.  
The 3x3 pixel window complicated the Spatial Coherence 
Test algorithm, and necessitated many additional memory 
accesses for each pixel. 
 
 

VI. PRELIMINARY RESULTS 
 

 At the time of this writing, all of the individual tests 
were successfully implemented and tested using the 
nighttime image.  The resulting cloud masks were identical 
to those generated by the corresponding microprocessor 
algorithms.  Unfortunately, when all of the tests were 
integrated, the design exceeded the available resources of 
the FPGA.  This was a first run at the design, and there are 
still ways of optimizing the space utilization of the design.  
One method, which would demonstrate the advantage of 
the reconfigurable architecture, would be to split the 
design into two parts.  One would process nighttime 
images, and the other would process daytime images.  
Depending on the time of day, the host would load the 
appropriate FPGA image into the FIREBIRDTM/PCI board. 
 Since the individual tests will be run in parallel in an 
integrated design, computational speed performance 
information can be obtained by looking at the execution 
times for the individual tests.  Generally, the integrated 
design can only execute as fast as the slowest test.  
Exceptions to this would be when the results from a faster 
test supersede those of the slower test, in which case the 
slower test would not need to be carried through to 
completion.  Also, the execution times of the various tests 
could vary depending on the pixel data being tested.  For 
instance, the Spatial Coherence Test requires all members 
of the 3x3 pixel window to have the same underlying 
surface conditions, i.e. Land or Sea.  If this is determined 
not to be the case, the test is aborted. 
 A preliminary examination of the execution times 
indicates that most of the tests could process the entire 
nighttime image in well under half a second.  The two 
exceptions were the Spatial Coherence Test, which took 

just over a second, and the Thin Cirrus Test, which took 
just under a second.  There most likely are ways to 
optimize the time performance of the test implementations, 
but the preliminary results are still able to offer some 
valuable insight.  For instance, if we assume worst case an 
execution time of 1.5 seconds, scale it up by the factor of 
5, and divide it into the 628 scan lines of nighttime image 
data, we get a result of approximately 84 scan lines per 
second, or 14 times faster than the AVHRR scan rate.  This 
is about twice as fast as the PowerPC 750.  A similar, if 
not greater, performance improvement is expected for the 
atmospheric correction algorithm, as well as the ASIC 
platform. 
 
 

VII. CONCLUSIONS 
 

 While there is still much work to be done, this 
analysis has already demonstrated several things.  
Although the PowerPC 750 was able to process the cloud 
detection algorithm 6-9 times faster than data was being 
scanned in, this commercial processor is at least 100 MIPS 
more powerful than its radiation hardened counterpart.  
Although this design ran into problems with FPGA 
resource constraints, there are FPGA devices available 
now with three times the number of system gates available.   
Since these parts are much larger than their radiation 
hardened counterparts, radiation tolerance requirements 
again become a factor and must be considered when 
implementing a system design.  This analysis has shown 
that the reconfigurable computing platform can be a 
valuable tool in the development cycle of a hardware 
design.  As the FPGA devices grow in size and 
complexity, it will become increasingly feasible to 
implement even more complex real time data processing 
algorithms.  In turn, FPGA devices and reconfigurable 
computing platforms can play an important role in 
reducing the amount of bandwidth and storage required for 
producing space science products.   
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